Vertex and Tree Arboricities of Graphs

نویسندگان

  • Gerard J. Chang
  • Chiuyuan Chen
  • Yaping Chen
چکیده

This paper studies the following variations of arboricity of graphs. The vertex (respectively, tree) arboricity of a graph G is the minimum number va(G) (respectively, ta(G)) of subsets into which the vertices of G can be partitioned so that each subset induces a forest (respectively, tree). This paper studies the vertex and the tree arboricities on various classes of graphs for exact values, algorithms, bounds, hamiltonicity and NP-completeness. The graphs investigated in this paper include block-cactus graphs, series-parallel graphs, cographs and planar graphs.

منابع مشابه

On vertex balance index set of some graphs

Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...

متن کامل

Induced and Weak Induced Arboricities

We define the induced arboricity of a graph G, denoted by ia(G), as the smallest k such that the edges of G can be covered with k induced forests in G. This notion generalizes the classical notions of the arboricity and strong chromatic index. For a class F of graphs and a graph parameter p, let p(F) = sup{p(G) | G ∈ F}. We show that ia(F) is bounded from above by an absolute constant depending...

متن کامل

Bounds on the arboricities of connected graphs

The vertex [edge] arboricity a(G) [a1(G)] of a graph G is the minimum number of subsets into which V (G) [E(G)] can be partitioned so that each subset induces an acyclic subgraph. Let G(m,n) be the class of connected simple graphs of order n and size m and let π ∈ {a, a1}. In this paper we determine π(m,n) := {π(G) : G ∈ G(m,n)} for integers m,n such that n− 1 ≤ m ≤ (n 2 ) .

متن کامل

Roman domination excellent graphs: trees

A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • J. Comb. Optim.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2004